
Introduction

Thread Safety

International standards are now making it practicable for developers to write portable multi-threaded
applications. Consequently there is an increasing demand for Library developers to produce software
that is thread safe.

In a Fortran 77 context the constructs that prohibit thread safety are, potentially, DATA, SAVE,
COMMON and EQUIVALENCE. This is because such constructs define data that will be shared by
different threads, perhaps leading to unwanted interactions between them; for example, the possibility
that one thread may be modifying the contents of a COMMON block at the same time as another thread
is reading it. You are therefore advised to avoid the use of such constructs wherever possible within
multi-threaded applications.

At Mark 19 of the NAG Library the use of unsafe constructs has been eliminated from the majority
of routines in the Library, making them thread safe. However, there are some routines where complete
removal of these constructs would seriously affect their interface design and usability. In such cases it
makes more sense to keep the routines unchanged and give clear warnings in the documentation that care
should be taken when calling such routines in a multi-threaded context. It should be noted that it is safe
to call any NAG routine in one thread (only) of a multi-threaded application.

Some Library routines require you to supply a routine and to pass the name of the routine as an argument
in the call to the Library routine. It is often the case that you need to supply your routine with more
information than can be given via the interface argument list. In such circumstances it is usual to define a
COMMON block containing the required data in the supplied routine (and also in the calling program).
It is safe to do this only if no data referenced in the defined COMMON block is updated within the
supplied routine (thus avoiding the possibility of simultaneous modification by different threads). Where
separate calls are made to a Library routine by different threads and these calls require different data
sets to be passed through COMMON blocks to user-supplied routines, these routines and the COMMON
blocks defined within them should have different names.

You are also advised to check whether the Library routines you intend to call have equivalent reverse
communication interfaces, which are designed specifically for problems where user-supplied routine
interfaces are not flexible enough for a given problem; their use should eliminate the need to provide
data through COMMON blocks.

The Library contains routines for setting the current error and advisory message unit numbers (X04AAF
and X04ABF). These routines use the SAVE statement to retain the values of the current unit numbers
between calls. It is therefore not advisable for different threads of a multi-threaded program to set the
message unit numbers to different values. A consequence of this is that error or advisory messages output
simultaneously may become garbled, and in any event there is no indication of which thread produces
which message. You are therefore advised always to select the ‘soft failure’ mechanism without any error
message (IFAIL = +1, see Section 2.3 of Essential Introduction) on entry to each NAG routine called
from a multi-threaded application; it is then essential that the value of IFAIL is tested on return to the
application.

A related problem is that of multiple threads writing to or reading from files. You are advised to
make different threads use different unit numbers for opening files and to give these files different names
(perhaps by appending an index number to the file basename). The only alternative to this is for you to
protect each write to a file or unit number; for example, by putting each WRITE statement in a critical
region.

You are also advised to refer to the Users’ Note for details of whether the Library has been compiled in
a manner that facilitates the use of multiple threads. Please note however that at Mark 19 the routines
listed in the following table are not thread safe in any implementations.

C02AFF C02AGF C02AHF C02AJF C05NDF C05PDF
D01AHF D01EAF D01FDF D01GBF D01GCF D01GDF
D01JAF D02BJF D02CJF D02EJF D02GAF D02GBF
D02HAF D02HBF D02JAF D02JBF D02KAF D02KDF
D02KEF D02LAF D02LXF D02LYF D02LZF D02MVF
D02MZF D02NBF D02NCF D02NDF D02NGF D02NHF
D02NJF D02NMF D02NNF D02NRF D02NSF D02NTF

[NP3390/19/pdf] SAFETY.1



Thread Safety Introduction

D02NUF D02NVF D02NWF D02NXF D02NYF D02NZF
D02PCF D02PDF D02PVF D02PWF D02PXF D02PYF
D02PZF D02QFF D02QGF D02QXF D02QYF D02QZF
D02RAF D02SAF D02XJF D02XKF D02ZAF D03PCF
D03PDF D03PEF D03PFF D03PHF D03PJF D03PKF
D03PLF D03PPF D03PRF D03PSF D03PUF D03PVF
D03PWF D03PXF D03PZF D03RAF D03RBF D05BDF
D05BEF E02GBF E04DGF E04DJF E04DKF E04MFF
E04MGF E04MHF E04MZF E04NCF E04NDF E04NEF
E04NFF E04NGF E04NHF E04NKF E04NLF E04NMF
E04UCF E04UDF E04UEF E04UFF E04UGF E04UHF
E04UJF E04UNF E04UQF E04URF E04XAF F02FCF
F02FJF F02HCF F04YCF F04ZCF F08JKF F08JXF
F11BAF F11BBF F11BCF F11DCF F11DEF F11GAF
F11GBF F11GCF F11JCF F11JEF G01DCF G01DHF
G01EMF G01HBF G01JDF G03FAF G03FCF G05CAF
G05CBF G05CCF G05CFF G05CGF G05DAF G05DBF
G05DCF G05DDF G05DEF G05DFF G05DHF G05DJF
G05DKF G05DPF G05DRF G05DYF G05DZF G05EGF
G05EHF G05EJF G05EWF G05EYF G05EZF G05FAF
G05FBF G05FDF G05FEF G05FFF G05FSF G05GAF
G05GBF G05HDF G07AAF G07BEF G07EAF G07EBF
G08EAF G08EBF G08ECF G08EDF G10BAF G13DCF
H02BBF H02BFF H02BVF H02CBF H02CCF H02CDF
H02CEF H02CFF H02CGF X04AAF X04ABF

SAFETY.2 (last) [NP3390/19/pdf]


